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The interaction of transverse electromagnetic plane 
waves and a moving ionizing shock wave in the 

presence of a magnetic field 

By W. F. HUGHES AND F. J .  YOUNG 
Carnegie Institute of Technology, Pittsburgh, U.S.A. 

(Received 2 May 1963 and in revised form 9 September 1963) 

Propagation of a transverse electromagnetic wave along a d.c. magnetic field 
and interaction with a moving shock wave is investigated. The direction of 
propagation is normal to the shock front, Solutions to electromagnetic fields, 
gas velocities and Doppler shifts in frequency are found in both the ionized and 
un-ionized gases. A frequency is obtained a t  which electromagnetic reflexion 
from the shock front is minimized. In  the ionized gas behind the shock front 
a fast and a slow electromagnetic wave result. By adjusting the shock velocity 
the frequency of the slow wave can be either raised or lowered. This frequency 
change, however, is not the Doppler shift and, consequently, can be made much 
larger than the Doppler shifts encountered at non-relativistic velocities. The 
slow wave attenuates much less than the ordinary fast wave, and applications 
to diagnostics and communications through plasmas and laser-beam frequency 
multiplication may be possible. 

1. Introduction 
The interaction of electromagnetic waves and moving ionizing shock waves is 

of interest in plasma diagnostics, ionospheric physics, and may have application 
to problems of communication through plasma sheaths. Interactions with 
stationary discontinuities have been discussed by Kahalas (1963) and Ullah & 
Kahalas (1963), and with moving shocks in the absence of a magnetic field by 
many investigators interested in diagnostic techniques (Chang 1961 ; Brandewie 
1963). 

The problem of this interaction with a moving surface of an electron gas (with 
thegasmoving with the samevelocityas the free surface) has been treated by Lam- 
pert (1956), Fainberg & Tkalich (1959) and Kurilko & Miroshnichenko (1962). 

We treat here the problem of the interaction of a plane T.E.M. wave propa- 
gating in a direction normal to a plane shock wave in the presence of a magnetic 
field. Two characteristic velocities then appear, the shock velocity and the 
velocity of the gas behind the shock. The gas in front of the shock is assumed to 
be un-ionized, and the gas behind the shock ionized and electrically conducting. 
A uniform steady magnetic field B, is applied in the direction of propagation 
(normal to the shock wave). Since the applied magnetic field is normal to the 
shock front, the ordinary Rankine-Hugoniot relations for an ionizing shock 
apply, and hydromagnetic shock effects need not be considered. 
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The shock itself may be an oblique shock (with respect to the fluid velocities). 
The un-ionized gas in front of the shock is completely uncoupled from the electro- 
magnetic wave, and behind the shock only the normal component of velocity 
couples into the relevant equations. We do assume, however, that the shock is 
normal with respect to the applied magnetic field and direction of propagation. 
Figure 1 illustrates the physical situation. The primed co-ordinate system is 
taken to be at rest with respect to the shock front. In  this co-ordinate system 
the normal component of the approaching gas is V,, and the normal component 
of the ionized receding gas is V,  which is, of course, less than V,. 

Y' 

t 
I 

E;. Shock 

t I 

Ionized gas 
Fluid velocity 

Un-ionized gas 

FIGURE 1. The general shock frame of reference showing relative gas velocities. 

One particular application of the solution is to the coaxial shock tube used for 
diagnostic purposes (Chang 1961; Brandewie 1963). Figure 2 shows such a tube. 
In  the tube the shock is normal to the fluid velocities. The velocity of the shock 
wave is V ,  in the negative x-direction. The absolute velocity of the gas is (V, - q,) 
in the negative x-direction. The magnetic field is applied in the x-direction which 
is the direction of propagation. The problem is aiialysed in terms of this diagram, 
although the results are valid for the more general situation shown in figure 1. 
A T.E.M. wave is initiated in the laboratory frame of reference and propagates 
in the x-direction along the tube. At the moving shock surface, the wave is 
partially reflected and partially transmitted, with frequency shifts and splitting. 
In  the shock frame of reference the angular frequency is a constant, w ' ,  but in 
the laboratory frame, where measurements are usually made, the frequency of 
the reflected wave undergoes a Doppler shift, and the transmitted waves may 
have frequencies entirely different from that of the incident wave. Of particular 
interest are the reflexion coefficient and transmission coefficient which are 
calculated in both the shock and laboratory frames of reference. 

The ionized gas is assumed to be a continuum with a scalar conductivity, 
although the displacement current is retained throughout. While this continuum 
assumption limits the applicability of the solution, many real physical situations 
are concerned with gases of sufficient density to allow this approximation. Any 
further refinement of the gas model would tend to obscure the simple results of 
the calculations which should hold at least qualitatively for more exact models. 
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2. Formulation of the problem 
In  figure 2 a shock wave moves in the negative x-direction with a speed V,. An 

axial magnetic field B, is applied in the x-direction and an electromagnetic 
(T.E.M.) wave propagating in the x-direction is initiated. The gas behind the 
shock wave moves with an absolute velocity V, which is less than V,. Relative to 
an observer at rest with respect to the shock front the ionized gas moves in the 
x-direction to the right with a velocity V,  = (Fi - G).  
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FIGURE 2. The coaxial shock tube. The laboratory frame co-ordinate system (x, y) is fixed 
with respect to the shock tube. The shock frame or rest frame of reference (x’, y’) is fixed 
with respect to the shock front. The shock moves to the left (negative x-direction) with 
wlocity Jrs, and the absolute velocity of the ionized gas is V ,  in the negative 2-direction. 

To begin the solution Maxwell’s equations and the fluid equations of motion 
are applied by an observer in the rest (or shock) frame of reference. These 
equations are solved simultaneously in the rest frame and subjected to the 
appropriate boundary conditions which are discussed later. In  the solution 
primed quantities refer to shock- or rest-frame quantities and unprimed 
quantities to the laboratory frame. Maxwell’s ‘curl ’ equations are 

v‘ E’ = - awiat’, (1)  

v‘ H’ = J’ + eo awlat’. ( 2 )  
Here it is assumed that the gas has the permeability ,uo and permittivity 8, of 
free space. The appropriate form of Ohm’s law for the ionized gas is 

where (T and J‘ are the electrical conductivity and current density respectively. 
V‘ is the velocity of the gas with respect to the shock frame. The equation of 
motion for the ionized gas is 

where viscosity is neglected and p’ and P‘ are the mass density and pressure 
respectively. Assuming propagation in the x’-direction, all x’ and t‘ variations 
can be replaced by exp {i(w‘t’ - y’x’)} where w’ and y‘ are the angular frequency 
and propagation constant respectively. Considering only transverse waves, 
3/32 = ajay’ = 0 and ( I )  to (4) simplify greatly under the assumption that 
the incident electromagnetic wave is comprised of an Eh0 and HL,. The zero 
subscript refers to field quantities in the un-ionized gas. Equations ( l ) ,  (2) and 
(4) combined with Ohm’s law can be written after linearization as 

J’ = (T(E’+~,V‘  x H’), (3) 

p’[aV’/at’+ (V’.V’)V’] = -V‘P‘  +,u,J’ x H’, (4) 

y‘EL* = w’pOH’*, ( 5 )  
iy’Hi* = (TEL* + ~ w ’ B ,  E? - V,(T,U, Hi* + ( T V ~ *  B,, (6) 

(7) $’(w’ - 7’5) Vi* = - c~Z3,(Eh* - V,p0 HI“ + BoVi*), 
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and Ohm’s law may be written explicitly as 
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Ji* = c (E~*-&u~H, ’*+B~~*) ,  (8) 
where the starred quantities are phasors. The other components of the equations 
and the other Maxwell equations are uncoupled and are not considered here. 
From (5 ) ,  (6) and (7) the dispersion equation for transverse oscillations is 
obtained 8s 

POY‘ - W’PO 0 

p0a + iO’Eop0 - (iy’ + v,ap,) gB0 (9) 
Po VBo - V,apoBo aBi + ip’(w’ - y ’5 )  

Expanded, the determinant becomes 

(10) 

where the diffusivity 7 = (ap0)-l and the Alfven velocity a = (B;/p‘po)* have 
been introduced. c is the velocity of light and is, of course, related to the perme- 
ability and permittivity by c2 = ( , U ~ E ~ ) - ~ .  Another equation of interest is 
obtained from (1) and (6) in terms of VL as 

Equation (10) has three roots for the propagation constant y’. Two roots 
represent fast and slow forward waves (denoted as y; and y;) and the third root 
represents a backward wave, assumed to be null. This assumption is equivalent 
to neglecting the reflexions from the far right end of the shock tube. The electric 
and magnetic field solutions in the ionized gas are then (as measured by an 
observer in the shock frame) 

(12) E; = C’ exp { i ( ~ ’ t ’  - yix’)} + D’ exp{i(w’t’ - yLx’)}, 

HI = (y;/p0w’) C‘ exp { i ( ~ ’ t ’  -?id)}+ (y;/pow’) D’exp (i(w’t’ - yLx’)}. (13) 

Upon substitution of EI from (12) into (1 1) there results 

In the un-ionized gas before the shock front the fields (asmeasured by anobserver 
in the shock frame) are 

Elo = A’ exp { i ~ ’ ( t ’  - x ’ / c ) }  + B’ exp {iu(t’ + x’lc)},  

Hio = (co/po)* [A’ exp {iw’(t’  - x’ /c ) }  - B‘ exp {iw‘(t’  + x‘/c)}]. 
(15) 

(16) 

In  the above expressions for the fields, A‘ is the amplitude of the incident wave 
and B‘, C’ and D’ must be obtained from the boundary conditions. The reflexion 
and transmission coefficients as measured in the shock frame can then be 
expressed in terms of these constants. 
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3. Boundary conditions 
To the obsemer in the shock frame, 

EL(z‘ = 0) = Eio(z’ = 0) and 

which expresses the continuity of the tangential fields across the shock front. 
These are the well-known relations that apply at a boundary between adjoining 
media and will yield two independent equations for A’, B’, C’ and D’. However, 
three equations are needed in order to determine B’, C’ and D’ in terms of the 
incident amplitude A’. The third condition is obtained from the continuity of 
the tangential component of velocity induced by the electromagnetic interaction. 
At the shock front z (x’  = 0) = co(x’ = 0). But To is everywhere zero since 
there is no electromagnetic coupling in the un-ionized gas, and no effects behind 
the shock can propagate upstream. Although H,’ is in the plane of the shock and 
gives rise to a magnetohydrodynamic shock effect, H,‘ and must be continuous 
unless the conductivity is infinite. A current sheet would have to exist in the 
shock front in order to sustain any discontinuity and such sheets can occur only 
in gases with essentially infinite conductivity. The magnetohydrodynamic shock 
interaction is neglected since it is a second-order effect. This procedure is standard 
and is discussed in the references. Therefore, K(x’ = 0) is taken as zero. 

Hk(z’ = 0) = H&z’ = 0), 

This condition in equation (1 1) yields 

and by continuity of the fields 
C’+D’ = A’+B’, 

c(y;C’+yLD’) = u’(A’-B’). 

The coefficients B’, C’ and D’ are then found in terms of A’ and 

4. Fields in the laboratory frame 

laboratory co-ordinate frame. The appropriate transformations 
The magnitude of the various waves can now be transformed into the 

/3E, = (E’-/3V x B)Y = E;-/3poEHL (23) 

and PH, = (H’+/3eoV x E), = 23; -&,EE;, (24) 

where /3 = (1  - ~ 2 / c 2 ) - ~  and V is the velocity of the shock frame with respect to 
the laboratory frame. Because IE/cl < 1, the amplitudes of the electromagnetic 
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waves in the un-ionized gas are essentially the same in the laboratory and shock 
frames by virtue of (23) and (24). To complete the solution in the un-ionized gas 
the laboratory-frame frequency and propagation constant must be determined. 

The fields in the un-ionized gas seen by the laboratory observer are of the form 

(25) 

H,, = (so/po)* [A’e~p{~[wit-yi(x-xo)l}-~’~~p~i[w,~+y,(~-~,)l}l, (26) 

where wi and w, are the angular frequencies of the incident and reflected waves 
respectively. xo is the position of the shock wave a t  some arbitrary initial time 
from which time t (in the laboratory frame) is reckoned. The arguments of the 
exponentials in (15) can be transformed by the Lorentz transformations of 
x’ and t’, x’ = P[(x - x,) + Et] and t‘ = P[t + K(x - xo) /c2] .  This operation yields 

By, = A’ exp ( i [wi t  - y& - x,)]} + B’ exp ( i [wrt  + y7(x - .,)I}, 
and 

w’t’ - y’x’ = P(w’ - y’v,) t - p / ’ ( x  - xo) (1  - v,/c) (27) 

for the incident wave and 

W’t’ + y‘x’ = P(w’ + y’v,) t +By’(. - T o )  (1 + v , /c )  (28) 
for the reflected wave. The transformed arguments of (27) and (28) should equal 
the corresponding arguments of (25). Therefore 

and hence the reflected wave frequency is 

w, = W i (  1 + v,/c)/(  1 - v , /c )  % mi( 1 + 2v, /c)  ( 3 4  

Finally, then, the fields in the un-ionized gas written in laboratory frame 
in terms of the incident frequency. 

co-ordinates are 

E,, = A’ exp [iwi(t - (x - x,)/c}] + B‘ exp [ iw,( 1 + 2E/c) {t + (x - xo)/c)], 
H,, = (eo/ ,uo)~ (A‘ exp [iw,(t - (x - x,)/c}]  

(33) 

- B’ exp [hi( 1 + 2K/c) {t  + (x - x,)/c)]}, (34) 

giving rise to the usual Doppler shift. 
To find the frequency, propagation constants and attenuation in the ionized 

gas as seen by an observer in the laboratory frame, the Lorentz transformations 
are applied to the terms i(w‘t‘ - ykx’) where k = 1 or 2, corresponding to the two 
forward waves in the ionized gas. The yk are complex. Let the real and imaginary 
parts of Y k  be denoted by Rey, and Im yk respectively. Then 

(W‘t’ - y p )  = P(w’ - yLK) t - py;,(X - x,) + Pw’V,(x - x0)/cZ. (35) 

This last result can be rewritten as 

P(w‘-Rey;K)t-PReyL(z-x,) - i ~ [ I r n y ~ ~ t + I i n y ~ ( x - z , ) ] + ~ w ’ ~ ( ~  -so)/c2. 
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Hence, we recognize that the frequency of the transmitted waves seen by the 
laboratory-frame observer are wTk = /3(0’ - Re yLE) a,nd the propagation 
constant is /3 (Re yL - w’</c2). In addition, there is attenuation, which is to be 
expected, for at a point in the ionized gas, the laboratory observer sees the shock 
wave moving and producing more fluid which attenuates the fields. (The 
imaginary parts of yk and y; will be negative.) 

The wave transmitted through the shock front splits into two waves of 
different frequencies (as measured in the laboratory frame). By (30) then the 
frequencies and propagation constants of the transmitted waves become 

wT1 = [ai/( 1 - T:/c)] - /3 Re y i x ,  Re y1 = Re by; - /30’E/c~, 

wT2, = [ w i / (  1 - E/c)] - /3 Re yhTi,, Re y, = Rep74 - /3w’E/cz. 

(36) 

(37) 

The fields in the ionized gas (as measured in the laboratory frame) can be 
written then 

E,  = (7, exp { i [wTl t  - P(Re 7; - w’E/c2) (x - r,)] +/3 Im y;[Et + (x - r,)]] 
+ D, exp {i[uT2t - P(Re rL - w’E/c2) (x - xO)l + /3 Im y2Et + (2 - xO)l}. (38) 

H, = C,exp{i[w,,t-,8(Rey;-w‘V,/~~) (z-x,)] +/3Imy~‘E‘st+ (x-x,)]) 

+ D,exp{i[oT,t-/3(Rey~-w’~/e2) (x-x,)] +/3ImyL[Et+ (x-x,)]). (39) 

It should be remembered that the time t is reckoned from the instant that the 
shock wave is located a t  position xo in the laboratory frame. 

The phase velocities of the two transmitted waves may be calculated in the 
shock frame. The phase velocities are simply d / y ;  and w’/yL in the shock frame. 
As will be shown, in a frame of reference at  rest with respect to the ionized gas, 
the y; wave is a non-propagating wave, and the yi  wave remains a fast forward 
wave. 

In  the laboratory frame, the fast wave remains a fast forward wave, but 
obviously the slow wave (standing in the gas) must look like a backward wave 
travelling with the gas in the negative x-direction. This is indeed the case and 
wT1 will always be a negative number, while y1 is a positive number. This implies 
that the wT1 wave is a backward wave generated in the ionized gas as it is formed 
by the moving shock (Lampert 1956). The constants C,, C,, D, and D, are ob- 
tained from (23) and (24). By equating coefficients there results: 

c, = C’, 

D, = D’, 

3 Fluid hlech. 19 
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5. Solution to the dispersion equation 
The solution to equation (10) is easily found when I w’/V,l 9 I V,/q I which would 

be the case for most physical problems. The application of Newton’s iterative 
method yields 

(44) 

for the largest root with a phase velocity of V,., = V,  which indicates that the y; 
wave is a slow wave propagating in the positive x’-direction and is actually 
exactly a standing wave in the ionized gas frame of reference. An additional 
iteration using Newton’s method reveals a correction to this term of the form 
i(V,5/73w’9 which is negligible compared to az/rV,. The other two roots are ob- 
tained by dividing (10) by (y’ - 7;). The resulting roots are equal but opposite 
in sign. The one representing the forward travelling wave, of interest here, is 

(45) 

with a phase velocity q;, = (2w’q)* which is a fast wave propagating in the positive 
x‘-direction. Using (44) and (45) and recognizing that lV,/cl < 1, the constants 
B’, C’, D’, Cl, C,, D, and D, can be simplified. Of particular interest is 

7;; 2 ( 1  - i) (w’/q7)i  

B‘ 1 + i [  1 - (2w’r)*/c] 

A’ = 1 +i[l+ (2w’ r ) * /c ] ’  
- N __ 

which is the reflexion coefficient in the shock frame. It is easy to show that the 
magnitude of the reflexion coefficient is minimized a t  w‘ = c2/q. Under this 
condition, provided that lo’/V,l 3 15/71 and IV,/cl < 1, the reflexion coefficient 
becomes 

The angular frequencies can then be written 

(dT1 @’{I -%/%}, wT2 w’{1-%/(27@’)’}* (48) 

As an example we choose 5 = 105m/sec, = 10*rn2/sec and V ,  = 45 and as 
long as w‘ 3 lo5 the conditions on (47) are satisfied. Then to minimize the 
magnitude of the reflexion coefficient w‘ g 9 x 10l2 which is a frequency of 
1.43 x 10l2 cfs. In  this particular case wT1 and 
wT2 g (9-0-0002) x 10l2. Hence we have one transmitted wave in the ionized 
medium, wT1, which undergoes a drastic frequency change while the other 
frequency wT2 is lowered slightly. Furthermore, the slow wave wpl is not attenu- 
ated nearly as much as the wT2 wave. 

The phase velocity (in the laboratory frame) of the backward slow wave is 
w r l / y l  which is (V , -K) .  Since (V,-V,) is a negative quantity the wave actually 
travels backward in the negative x-direction. In  fact, this velocity is precisely 
the velocity of the ionized gas in the laboratory frame. 

- 3w’ or wT1 - 2.70 x 
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6.  Conclusions 
The interaction of transverse electromagnetic plane waves with a moving 

ionizing shock wave are investigated. General expressions for the electro- 
magnetic fields, gas velocities and propagation constants are derived. However, 
the dispersion equation is not solved in general but rather for the case when 
lw’/Pi I 16/71, which is the situation in most cases of practical interest. Under 
this condition it is possible to minimize the magnitude of the electromagnetic 
reflexion coefficient. For example this minimum occurs at a frequency of 
1.43 x 10l2c/s when 7 = 104m2/sec. If it  is desirable to propagate through the 
shock at  a lower frequency with minimum reflexion, then the conductivity of the 
ionized gas must be decreased. For example, at w’ = 62.8 x lo9 corresponding to 
a frequency of 1010 c/s, to produce minimum reflexion the conductivity must be 
adjusted such that 7 = 1.43 x lo6 or 

Two forward travelling transmitted waves exist in the ionized gas, a fast wave 
and a slow wave, in the shock frame of reference. In  the gas frame of reference the 
slow wave is a standing wave. In  the laboratory frame of reference the slow wave 
actually appears as a slow backward wave travelling in the negative x-direction 
with a phase velocity equal to the absolute velocity of the ionized gas. 

Exact expressions, including relativistic effects, were used for all equations 
(except the equation of motion. Hence the results should be valid for relativistic 
values of the velocities and V,  so long as IE/c12 < 1. However, the solution of 
the dispersion equation is only approximate so that the final results should be 
applied only for situations in which IV,/cl and (V,/cl < 1. 

Although the calculations have been applied specifically to a moving shock 
wave, the results should hold for any free plasma surface moving with velocity 
(which might be positive or negative) and any arbitrary V,  (positive or negative). 
In  the case where 5 = 0 (the plasma moving as a whole), the solutions correspond 
to those obtained by Fainberg & Tkalich (1959) for an electron gas. 

The most striking result of these calculations is the possibility of producing 
new transmitted transverse waves in a plasma with a drastically different 
frequency from that of the incident wave, and which do not attenuate so rapidly 
as the ordinary wave with a frequency near that of the incident wave. From 
equations (44) and (45) the attenuation constant (in the shock frame) of the 
wT1 wave is (u2/7V,) but for wT2 it  is (w’ /27)* .  In  general (u2/7V,) < (w’ /2q)* .  For 
instance in the example discussed in the previous section, with w‘ = 9 x 10l2 and 
7 = 104m2/sec, (w’ /2y)*  = 2-1 x lo4. (u2/7V,) depends on the Alfvh speed and 
hence may vary considerably depending on the magnitude of the applied magnetic 
field B, and the density of the gas, but could under conditions easily achieved in 
practice be of order unity. 

Several practical applications, aside from diagnostics, come to mind and may 
warrant further consideration: transmission through plasma sheaths and laser- 
or maser-beam frequency multiplication may be mentioned. 

= 0*555mho/m. 

2-2 
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7. Extension to the more general problem 
In  the above calculation and discussion, it has been assumed that the plasma 

surface was generated by a shock wave and that IV,l > /I$\. The numerical 
values of E and V, were taken positive in the direction defined in the text. 

However, the results of the calculations are valid for any general numerical 
values of V ,  or V,, either of which may be positive or negative. A negative value 
of V ,  (V, is positive in the negative x-direction) indicates that the radiation source 
(laboratory frame) is receding from the plasma surface and very large positive 
values of V,  can be achieved if the source is made to approach the free surface. 
1; is the velocity of the ionized gas relative to the shock front or plasma surface, 
measured positive in the positive x-direction. A negative value of V,  indicates 
that the plasma free surface or front de-ionizes the gas as it flows into the front. 
Furthermore, in general, 1x1 may be larger than or less than 151. 

The effects of changing the numerical values of 6 and V, are the following. 
The Doppler shift is positive or negative depending on whether V,  is positive or 
negative. To the order of the approximations made in solving the dispersion 
equation, the slow wave in the ionized gas is a backward or forward wave (in the 
positive-x sense) depending respectively on whether the numerical value (K - V,) 
is positive or negative since the phase velocity of the slow wave is 

The frequency wT1 (in terms of w ’ )  is increased or decreased as shown by 
equation (48). 

The work underlying this paper was supported by a grant from the National 
Science Foundation. 
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